X-ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa
نویسندگان
چکیده
Does not respond to nucleotides 1 (DORN1) has recently been identified as the first membrane-integral plant ATP receptor, which is required for ATP-induced calcium response, mitogen-activated protein kinase activation and defense responses in Arabidopsis thaliana. In order to understand DORN1-mediated ATP sensing and signal transduction, crystallization and preliminary X-ray studies were conducted on the extracellular domain of DORN1 (atDORN1-ECD) and that of an orthologous protein, Camelina sativa lectin receptor kinase I.9 (csLecRK-I.9-ECD or csI.9-ECD). A variety of deglycosylation strategies were employed to optimize the glycosylated recombinant atDORN1-ECD for crystallization. In addition, the glycosylated csI.9-ECD protein was crystallized at 291 K. X-ray diffraction data were collected at 4.6 Å resolution from a single crystal. The crystal belonged to space group C222 or C2221, with unit-cell parameters a = 94.7, b = 191.5, c = 302.8 Å. These preliminary studies have laid the foundation for structural determination of the DORN1 and I.9 receptor proteins, which will lead to a better understanding of the perception and function of extracellular ATP in plants.
منابع مشابه
Feasibility Cultivation of Camelina (Camelina sativa) as Medicinal-Oil Plant in Rainfed Conditions in Kermanshah-Iran's First Report
In Iran, more than 90% of raw materials including oils and oil seeds are provided through import. Camelina sativa L. as an oilseed crop, belongs to Brassicaceae family, has been shown in several experiments that need very little water and resistant to chilling injury than other plant oils, especially canola. This Experiment was conducted at research station of Campus of Agriculture and Natural ...
متن کاملComputational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1
DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the...
متن کاملOf ATP receptors, opioid receptors, and AKAP regulation of calcium channels
This month's installment of Generally Physiological concerns the identification of a previously unknown type of purinergic receptor in plants, differential regulation of calcium channels by two different AKAP proteins, and sodium regulation of opioid receptors. Initially greeted with skepticism, the notion that ATP plays a role in mam-malian extracellular signaling is now generally accepted, an...
متن کاملRecombinant Expression of the Non-glycosylated Extracellular Domain of Human Transforming Growth Factorβ Type II Receptor Using the Baculovirus Expression System in Sf21 Insect Cells
Transforming growth factor beta (TGFβ1, β2, and β3) are 25 kDa disulfide-linked homodimers that regulate many aspects of cellular functions, consist of proliferation, differentiation, adhesion and extracellular matrix formation. TGFβs mediate their biological activities by binding of growth factor ligand to two related, functionally distinct, single-pass transmembrane receptor kinases, known as...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 72 شماره
صفحات -
تاریخ انتشار 2016